Error bounds for kernel-based numerical differentiation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error bounds for kernel-based numerical differentiation

The literature on meshless methods observed that kernel-based numerical differentiation formulae are robust and provide high accuracy at low cost. This paper analyzes the error of such formulas, using the new technique of growth functions. It allows to bypass certain technical assumptions that were needed to prove the standard error bounds on interpolants and their derivatives. Since differenti...

متن کامل

Accurate Error Bounds for the Eigenvalues of the Kernel Matrix

The eigenvalues of the kernel matrix play an important role in a number of kernel methods, in particular, in kernel principal component analysis. It is well known that the eigenvalues of the kernel matrix converge as the number of samples tends to infinity. We derive probabilistic finite sample size bounds on the approximation error of individual eigenvalues which have the important property th...

متن کامل

Asymptotic error bounds for kernel-based Nystrm low-rank approximation matrices

• Many kernel-based learning algorithms have the computational load. • The Nyström low-rank approximation is designed for reducing the computation. • We propose the spectrum decomposition condition with a theoretical justification. • Asymptotic error bounds on eigenvalues and eigenvectors are derived. • Numerical experiments are provided for covariance kernel and Wishart matrix. AMS subject cla...

متن کامل

Asymptotic error bounds for kernel-based Nyström low-rank approximation matrices

Many kernel-based learning algorithms have the computational load scaled with the sample size n due to the column size of a full kernel Gram matrix K. This article considers the Nyström low-rank approximation. It uses a reduced kernel ?̂?, which is n×m, consisting of m columns (say columns i1, i2,···, im) randomly drawn from K. This approximation takes the form K ≈ ?̂?U?̂?, where U is the reduced ...

متن کامل

Improving error bounds for multipole-based treecodes

Rapid evaluation of potentials in particle systems is an important, time-consuming step in many physical simulations. Over the past decade, the development of treecodes, such as the fast multipole method and Barnes–Hut method, has enabled large scale simulations in astrophysics, molecular dynamics, material science, etc. These methods use fixed-degree polynomial approximations of the potential ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerische Mathematik

سال: 2015

ISSN: 0029-599X,0945-3245

DOI: 10.1007/s00211-015-0722-9